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Abstract: (1) Background:One of the most common cancers that affect North American men and
men worldwide is prostate cancer. The Gleason score is a pathological grading system to examine
the potential aggressiveness of the disease in the prostate tissue. Advancements in computing and
next-generation sequencing technology now allow us to study the genomic profiles of patients in
association with their different Gleason scores more accurately and effectively. (2) Methods: In this
study, we used a novel machine learning method to analyse gene expression of prostate tumours
with different Gleason scores, and identify potential genetic biomarkers for each Gleason group.
We obtained a publicly-available RNA-Seq dataset of a cohort of 104 prostate cancer patients from the
National Center for Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO) repository,
and categorised patients based on their Gleason scores to create a hierarchy of disease progression.
A hierarchical model with standard classifiers in different Gleason groups, also known as nodes,
was developed to identify and predict nodes based on their mRNA or gene expression. In each
node, patient samples were analysed via class imbalance and hybrid feature selection techniques to
build the prediction model. The outcome from analysis of each node was a set of genes that could
differentiate each Gleason group from the remaining groups. To validate the proposed method, the set
of identified genes were used to classify a second dataset of 499 prostate cancer patients collected
from cBioportal. (3) Results: The overall accuracy of applying this novel method to the first dataset
was 93.3%; the method was further validated to have 87% accuracy using the second dataset. This
method also identified genes that were not previously reported as potential biomarkers for specific
Gleason groups. In particular, PIAS3 was identified as a potential biomarker for Gleason score 4 + 3 =
7, and UBE2V2 for Gleason score 6. (4) Insight: Previous reports show that the genes predicted by
this newly proposed method strongly correlate with prostate cancer development and progression.
Furthermore, pathway analysis shows that both PIAS3 and UBE2V2 share similar protein interaction
pathways, the JAK/STAT signaling process.
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1. Introduction

Cancer is among the main causes of death worldwide. Among males, prostate cancer is the cancer
type with the highest incidence; 1.276 million new cases were diagnosed in 2019 [1]. To date, most
cancer studies have concentrated on finding biomarkers that enable differentiating malignant tumours
from benign ones. More recent studies, though, have focused on specific clinical aspects of tumours,
such as recurrence, progression, survivability, and metastasis, among others.

In the 1950s, Pierre Denoix devised a system that categorises solid tumours into different stages [2].
The classification (TNM) of cancer progression is done by utilising (T) the extension and the size of
the main tumour, (N) the lymphatic involvement, and (M) the metastasis levels [3]. In prostate cancer,
these characteristics are also used to assign a metric of tissue organisation and disease aggressiveness
called the Gleason score. That score is calculated by adding two numbers: the most common pattern
of the tumour cells is used as the first number, while the second number corresponds to the next
most common pattern. Each individual score varies from 3 to 5, depending on the aggressiveness
of the tumour, where the highest score means the most aggressive form of cancer [4]. Epstein et al.,
however, indicated that Scores 2–5 are no longer assigned to the tissue and these multiple scores can be
categorised together with score 6 as group 1, yielding categories as depicted in Table 1. They are used
to determine prognosis of disease. As such, we have used it as the main scheme for prostate cancer
score categorization in our method to detect transcriptomic biomarkers that can accurately classify
specific Gleason scores and groups. This categorization strategy has been shown to clearly indicate
cancer recurrence, and improve the prognostic role of the Gleason score [5].

Table 1. Gleason groups considered in this study.

Gleason Group Score

1 6

2 3 + 4 = 7

3 4 + 3 = 7

4 8

5 9 and 10

Recent prostate cancer research has greatly focused on identifying gene expression patterns
that correlate with disease progression, and can be used as predictive tools for patient treatment
and outcome. Moreover, advances in next-generation sequencing (NGS) technology have made
genomic data analysis widely available. The output of NGS sequencers requires preprocessing
algorithms to do things such as align the reads to a reference human genome and assemble them
into transcripts. Many genomic tools that align the RNA-Seq reads to the human genome have been
proposed, especially BLAST is one of the first tools developed to align reads [6]. TopHat2 is a widely
used, open-source tool that incorporates Bowtie sequence alignment to align reads [7]. STAR is the
fastest RNA-Seq sequence alignment algorithm to date, although it requires huge computational
resources to perform efficiently [8]. Based on the need for understanding the biological basis of the
visual Gleason microscopic assessment, Roberto et al. conducted a gene expression profiling on two
groups of Gleason score 6 and 7, or high, using a metabolic gene panel. The panel consists of many
gene members of the JAK/STAT pathway [9]. In this study, we analysed the transcription level of
different Gleason scores to find genes that can identify one specific Gleason group from the others.
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In addition, machine learning applications in genomic analysis have become a solid approach to
analysing RNA-Seq data for studying a multitude of diseases. Alkhateeb et al. proposed a supervised
method to discover biomarkers that can predict the likelihood that a prostate cancer tumour will
progress to the next stage [10]. Arvaniti et al. proposed a deep learning approach to predict Gleason
scores [11]. Their model was trained using tissue microarray (TMA) images of 641 patients with varying
Gleason scores, and validated using 245 patient samples with Gleason scores that were reviewed
by pathologists. Although the study by Arvaniti et al. reported decent performance measurements
(average accuracy 85.72%, and recall 0.57%), it did not report the panel of biomarker genes that were
used by the trained convolutional neural network (CNN) to predict Gleason scores. Citak-Er et al.
proposed a machine learning approach for predicting Gleason scores [12]. Their method uses a support
vector machine (SVM) on prostate images to learn the visual attributes of the disease and to predict
the disease outcome. That study was conducted on a limited cohort of prostate cancer patients, and
the results showed a higher sensitivity over the specificity in the prediction model (accuracy = 76.83%;
sensitivity = 83.38%; specificity = 68.36%).

The focus of this study was to identify genes that can be used to differentiate specific Gleason
groups. This work is an extension of our previously proposed prediction model, which was based on
analysing the RNA-Seq data from patients with different Gleason scores [13]. The method can track
transcripts associated with specific genes, in addition to their corresponding expression values. The
results of the initial trial show great potential to build a simple system to diagnose Gleason scores
based on NGS data.

2. Results

The first dataset used in this study is a collection of 104 samples and their TPM values. Stated
as a classification problem, this study designates five classes obtained from joint Gleason groups.
The distribution of each group is shown in Figure 1. The dataset was mapped against the human
genome version hg19 with 88% to 99% uniquely aligned reads. Throughout a 10-fold cross-validation
model, we obtained a total of seven samples that were misclassified and another 97 samples that
were classified correctly, with the total number of samples being 104. The accuracy of the model
was calculated from the total number of correctly classified samples divided by the total number of
samples.

Figure 1. Gleason groups and their distributions.

The model also identified six gene transcripts that are differentially expressed in the five different
Gleason scores. Of these, the corresponding genes shown in Tables 2–5 are the most relevant for
identifying prostate cancer; the Gleason scores using the hierarchical method are illustrated in Figure 2.
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Different classification methods for each stage within the hierarchy are shown in Table 6. The first node
of the hierarchy yields 94% accuracy in identifying Gleason score 3 + 4 = 7 compared to the other scores.
The samples are then passed through node 2, in which Gleason score 4 + 3 = 7 was identified from the
rest with a prediction accuracy of 98%. The other samples were then passed through node 3, where
Gleason score 6 was identified with 100% accuracy. The remaining samples were finally processed in
the last node, where the Gleason score 8 was identified from the Gleason score 9 with 100% accuracy.
Due to the similarity in the aggressiveness of the tumour and the low number of samples, all the other
Gleason scores were merged in the last node.

Figure 2. Hierarchical tree of classifications of Gleason groups against the rest, along with the
corresponding classification accuracies.

Table 2. Set of resulting transcripts in Gleason group 1.

Transcript Gene Description

NM_003350 UBE2V2 ubiquitin conjugating enzyme E2 V2 (UBE2V2)

NM_153051 MTMR3 myotubularin related protein 3 (MTMR3), transcript variant 2

NM_207445 C15orf54 chromosome 15 open reading frame 54 (C15orf54)
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Table 3. Set of resulting transcripts in Gleason group 2.

Transcript Gene Description

NM_001170880 GPR137 G protein-coupled receptor 137 (GPR137), transcript variant 2

NM_001198827 C8orf58 chromosome 8 open reading frame 58 (C8orf58), transcript
variant 3

NM_004629 9p13.3 Fanconi anemia complementation group G (FANCG)

NM_001098268 LIG4S DNA ligase 4 (LIG4), transcript variant 3

NM_016641 GDE1 glycerophosphodiester phosphodiesterase 1 (GDE1),
transcript variant 1

NM_002445 MSR1 macrophage scavenger receptor 1 (MSR1), transcript variant
SR-AII

NM_001126337 TUFT1 tuftelin 1 (TUFT1), transcript variant 2

NM_033071 SYNE1 spectrin repeat containing nuclear envelope protein 1(SYNE1),
transcript variant 2

NM_052906 ELFN2 extracellular leucine rich repeat and fibronectin typeIII domain
containing 2 (ELFN2), transcript variant 1

NM_000714 TSPO translocator protein (TSPO), transcript variant PBR

NM_004374 COX6C cytochrome c oxidase subunit 6C (COX6C)

NM_001007544 C1orf186 chromosome 1 open reading frame 186 (C1orf186)

NM_001276438 KCNJ15 potassium voltage-gated channel subfamily J member 15
(KCNJ15), transcript variant 7

NM_001252021 TOR2A torsin family 2 member A (TOR2A), transcript variant 7

NM_152612 CCDC116 coiled-coil domain containing 116 (CCDC116), transcript
variant 1

Table 4. Set of resulting transcripts in Gleason group 3.

Transcript Gene Description

NM_001136224 RCOR3 REST corepressor 3 (RCOR3), transcript variant 2

NM_001017967 MARVELD3 MARVEL domain containing 3 (MARVELD3), transcript
variant 1

NM_006099 PIAS3 protein inhibitor of activated STAT 3 (PIAS3)

NM_152395 NUDT16 nudix hydrolase 16 (NUDT16), transcript variant 2

NM_006473 TAF6L TATA-box binding protein associated factor 6 like (TAF6L)

NM_001145541 TCP11L1 t-complex 11 like 1 (TCP11L1), transcript variant 2

NM_182501 MTERF4 mitochondrial transcription termination factor 4 (MTERF4)

Table 5. Set of resulting transcripts in Gleason group 4.

Transcript Gene Description

NM_001258330 EPB41L1 erythrocyte membrane protein band 4.1 like 1 (EPB41L1),
transcript variant 4
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Table 6. Classification performance for each step in the hierarchy.

Gleason Group Accuracy Sensitivity Specificity F-Measure MCC ROC Area

3 + 4 = 7 vs. Res 94 95 94 0.94 0.88 95

4 + 3 = 7 vs. Rest 98 100 96 0.98 0.96 99

6 vs. Rest 100 100 100 1.00 1.00 100

8 vs. 9 100 100 100 1.00 1.00 100

Figure 3 shows the classifiers that have been utilised to identify the set of transcripts that
differentiate specific Gleason groups against the rest. The classifiers are represented on the x-axis,
while the classification performance measurements are represented on the y-axis.

Figure 3. Accuracy obtained by each classifier for classifying one versus the rest for all five
Gleason groups.

Naïve Bayes outperformed the other classifiers, as it distinguished the first Gleason score node
from the rest with 94% accuracy, the second node with a higher accuracy of 98%, and the last two
Gleason score nodes with 100% accuracy, as shown in Figure 3.

To further validate the model, we applied the method on a second publicly-available dataset [14]
obtained from the National Center for Biotechnology Information (NCBI) portal [15]. This second
dataset contains gene expressions for 498 patient samples. The proposed model showed an excellent
prediction accuracy on the 498 patients’ gene expressions. The prediction accuracy for all the Gleason
scores was above 90% except for the 4 + 3 = 7 Gleason score versus the rest (Figure 4).
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Figure 4. Classification accuracies obtained after applying the model on the second dataset.

3. Discussion

Many of the genes that encode the differentially expressed transcripts identified in this study
have been previously shown to play various roles in cancer. Some have been shown to promote cancer
progression, while other play a protective role. For example, UBE2V2, whose gene’s transcript was
selected in the third node of our hierarchical model, has been shown to protect cells by mediating
DNA repair functions [16]. In familial prostate cancer, however, a high frequency variant of UBE2V2
was identified and found to affect DNA repair and androgen signaling [17]. In our model study, a
different quantification of the UBE2V2 transcript was able to predict Gleason score 6 (group 1) in the
first dataset. Differential expression of UBE2V2 has also been associated with poor prognosis in breast
cancer [18].

Our study also revealed that the differential expression of GPR137 expression and EPB41L1 is
associated with tumours of Gleason scores 3 + 4 = 7 and 8, respectively. Earlier studies show that
proteins encoded by EPB41L1 are associated with the proper organisation of the cell cytoskeleton,
and that EPB41L1 plays an important role in the negative regulation of cell metastasis, migration,
and invasion. Expression of EPB41L1 has been observed to be lower in prostate cancer compared
to normal cells. Although it remains unclear, disruption of normal EPB41L1 expression may play
an important role in disorganised cell and tissue structures associated with higher grade prostate
cancer [19], and thus link its deregulation to prostate cancer progression and prognosis. Furthermore,
reduced expression of EPB41L1 plays an important role in recurrence and has been associated with
highly metastatic lung and breast cancer [20]. EPB41L1 was also shown to be differentially expressed
in gastric cancer [21]. On the other hand, GPR137 expression has been shown to be upregulated
in prostate cancer tissues compared with paracancerous tissues. Moreover, knockdown of GPR137
resulted in decreased cell proliferation and colony formation in PC-3 and DU145 prostate cancer cell
lines, and was associated with cell cycle arrest at G0/G1 phase. GPR137 suppression also decreases the
migration and invasive abilities of PC-3 cells, suggesting that GPR137 plays a role in prostate cancer
progression and metastasis [22].

Differential expression of PIAS3 and Rest Corepressor 3 (Rcor3) were both associated with tumours
of Gleason score 4 + 3 = 7. While very little is known about the role of Rest Corepressor 3 (Rcor3) in
prostate cancer, it has been shown to act as an antagonist of cell differentiation [23], a characteristic of
prostate tumours with Gleason score 4 + 3 = 7 [4]. On the other hand, differential PIAS3 expression
has been observed in a variety of human cancers, including lung, breast, prostate, colorectal, and
brain [24]. PIAS3 is expressed in prostate cancer cells, and its expression is induced in response to
androgens [25,26]. Although PIAS has been shown to enhance the transcriptional activity of androgen
receptors (AR) in prostate cancer cells, other studies have revealed that ectopic overexpression of
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PIAS3 suppresses AR-mediated gene activation induced by dihydrotestosterone (DHT) [24]. PIAS3
acts as a negative regulator of AR transcriptional activity and signaling through direct protein–protein
interaction. Recent findings have also revealed that AR is also differentially correlated with Gleason
score patterns in both primary and metastatic prostate cancer, where it is upregulated in Gleason group
4 and downregulated in Gleason pattern 5.

PIAS3 is a member of the mammalian PIAS family consisting of four members: PIAS1, PIAS2,
PIAS3, and PIAS4 [27]. PIAS3 protein directly binds to several transcription factors and either blocks or
enhances their activity. PIAS3 is also specific inhibitor of signal transducer and activator of transcription
3 (STAT3), a transcription factor and member of the Janus kinase (JAK)/STAT signaling pathway [28,29].
This signaling pathway has been a target of interest in many cancer studies in recent years. In
prostate cancer, the expression levels of JAK/STAT have been shown to impact the progression
of the disease [30,31]. As an inhibitor of STAT3, PIAS3 blocks the transactivation and binding of
STAT3 to specific DNA elements via protein–protein interactions, thereby inhibiting STAT3-mediated
gene activation. Figure 5 depicts the protein–protein interaction among genes with 4 + 3 = 7 and 6
scores, as extracted from ProteomicsDB (https://www.proteomicsdb.org/proteomicsdb/#human/
proteinDetails/86810/interactions) based on experimental and epidemiological evidence. The Figure
shows that both PIAS3 and UBE2V2 share the same protein interaction network.

PIAS3 is also the only member of the PIAS family that has been shown to directly interact with
Stat5a/b and repress Stat5-mediated transcription [32]. Stat5a/b is constantly active in human prostate
cancer [33], associated with high histological grades [34], and a predictor of early prostate cancer
recurrence [35]. Transcription factor Stat5a/b has been shown to regulate the viability and growth of
human prostate cancer cells [36,37]. Moreover, in vitro inhibition of Stat5a/b induces apoptosis in
human prostate cancer cells [33,38]. In vivo, Stat5a/b inhibition blocks prostate cancer subcutaneous
and orthotopic xenograft tumour growth in nude mice [38]. Although studies have revealed an
inhibitory role for PIAS3 against Stat5a/b-driven gene transcription and disease progression in breast
cancer, the predominant Stat5a/b protein that binds to DNA has been shown to be N-terminally
truncated in human prostate cancer cells and clinical prostate cancers [39]. Further studies have
demonstrated that the N-domain of Stat5a/b binds to PIAS3. Hence, the truncated form of Stat5 in
prostate cancer cells evades PIAS3-mediated transcriptional inhibition, thereby increasing prostate
cancer growth and progression. Thus, the proteolytic cleavage of the N-terminus of Stat5a/b
may be a mechanism by which Stat5 evades the transcriptional repression by PIAS3 in prostate
cancer cells. This further indicates the complexity of intracellular protein interactions and its role in
disease progression.

Our study applied a novel machine learning model to identify differentially expressed, prostate
cancer stage-specific transcripts. Although the application of this model to other related datasets is
required to further valid our findings, the use of this model in conjunction with in vitro and in vivo
biological studies will aid in elucidating the intricate molecular relationships between the identified
transcripts. Moreover, this will provide more insight into predicted prognostic outcomes and the
development of effective therapeutic strategies against prostate cancer progression.

https://www.proteomicsdb.org/proteomicsdb/#human/proteinDetails/86810/interactions
https://www.proteomicsdb.org/proteomicsdb/#human/proteinDetails/86810/interactions
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Figure 5. An interactive figure taken from proteomics database STRING. It shows neighbouring protein
binding and pathway interactions for a given gene using STRING and KEGG pathway analysis. Here,
the gene of interest is PIAS3, an identified possible biomarker in the 4 + 3 = 7 score. The figure shows
the interaction between other proteins and pathways associated with it.

4. Materials and Methods

The primary dataset used in this study was retrieved from the National Center for Biotechnology
Information (NCBI) and is referenced with Gene Expression Omnibus (GEO) number GSE54460 [40].
This RNAseq prostatectomy dataset was generated from 106 prostate cancer tissue samples and
validated on an independent dataset with 140 patients. Several health sciences centres provided
data samples as well. The Moffitt Cancer Center (MCC) contributed ten samples from patients who
underwent radical prostatectomies between the years 1987 and 2003. The Sunnybrook Health Sciences
Centre at the University of Toronto provided 35 samples from patients treated for prostate cancer
between the years 1998 and 2006. The Atlanta Veterans Administration Medical Center (AVAMC)
donated 61 tissue samples from patients who underwent radical prostatectomy between the years 1990
and 2000. Table 7 shows the number of samples grouped by their Gleason group. Based on Epstein’s
model, there are five Gleason groups: 4 + 3 = 7, 3 + 4 = 7, 6, 8, and above 8 (9 and 10).
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Table 7. Numbers of samples in different Gleason groups.

Gleason Score Number of Samples

6 10

3 + 4 = 7 55

4 + 3 = 7 24

8 10

9 4

This dataset was generated by using the Illumina HiSeq 2000 NGS on paired-end sequences of
length 51 bp each. The pre-processing pipeline model starts by obtaining the RNA-Seq samples and
pre-processing it using SRAtools [41], as depicted in Figure 6. The process continues by incorporating
the STAR aligner [8] to align the samples reads into the human genome (hg19). Then, the process
assembles the transcripts and quantifies the reads into the assembled transcripts using RSEM [42].
RSEM uses transcripts per million of reads (TPM) to compute the quantification of each read into
a transcript.

Figure 6. Pre-processing steps of the proposed method.

NGS technology allows us to read the patient’s genome and generate a significant amount of
raw data in a snapshot. However, the underlying process yields artefacts, and pre-processing must be
done before the downstream analysis. These artefacts include duplication and bias reads [43], among
others. Counting the reads that are assembled by mapping them to the human genome gives accurate
indicators of transcript expression. Since the samples are pair-ended reads, TPM is used to measure
the read quantification rather than reads per kilobase per million of reads (RPKM) [44]. Additionally,
the reason for choosing TPM instead of fragments per kilobase per million (FPKM) [45] is that TPM
normalises the reads to the length of the gene first, which makes it easier to compare the quantified
reads among different samples.
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4.1. Class Imbalance

Some classes have a markedly lower number of samples than the others, which may cause some
classifiers to become biased towards the majority class. To solve this problem, multiple resampling
methods were deployed and tested to identify the specific method that would yield the best solution
for a particular dataset. After applying multiple oversampling and under-sampling methods, the best
option was found to be the synthetic minority oversampling technique (SMOTE) [46] for oversampling
the minority class, while the neighbourhood cleaning rule (NCL) [47] was used for undersampling the
majority class.

NCL works by removing any sample whose class is different from the class of at least two of its
three nearest neighbours. SMOTE, instead, introduces a new way of creating new samples, by utilising
the feature vector that connects each sample and introduces a new synthetic sample along the line
that connects the two underlying samples. The exact location of the new sample on the line itself is
calculated by measuring the Euclidean distance between the two samples and multiplying that value
by a random number between 0 and 1. Figure 7 shows a hypothetical example of the mechanism
followed by SMOTE, by adding new synthetic samples randomly along the line that connects each of
two original samples in a minority class. The blue points represent the original samples, while the
amber points represent the synthetically generated samples.

Figure 7. Hypothetical example that shows how the synthetic minority oversampling technique
(SMOTE) works.

4.2. Feature Selection

As the output of the pre-processing step, the method retrieved 41,971 transcripts along with
their corresponding quantifications measured by TPM. Such a large number of transcripts leads to a
complex classification model, mostly due to the curse of dimensionality [48]. Thus, feature selection
was applied to reduce the dimensionality of the problem. The first step of the feature selection step is
to filter the transcripts based on their information gain values by selecting the ones with the highest
scores. The filter method, which is called attribute evaluator, is the procedure by which each attribute
(transcript) in the dataset is assessed with regard to the class. This procedure produces a list of
attributes (transcripts) with a score for each attribute showing its effect on the actual class. Then,
the attributes with the highest scores are selected, discarding those with lower scores. In this work,
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information gain (IG) was used as an attribute evaluator to rank each attribute vector [49]. The IG of
attribute vector X concerning class vector A is defined as follows:

IG(A, X) = H(A)− H(A|X), (1)

where
H(A) = − ∑

a∈A
p (a) log2(p (y)), (2)

and
H(A|X) = − ∑

x∈X
p (x) ∑

a∈Y
p(a|x)log2(p (ax)). (3)

Here, H(A) is the entropy of the class vector A and H(A|X) is the conditional entropy of A given X.
After filtering the transcripts based on their IG scores, a wrapper-based feature selection algorithm

that uses minimum redundancy maximum relevance (mRMR) is used to narrow down the most
relevant, least redundant transcripts to a few per group; mRMR has the capability of incorporating any
classifier to select features (transcripts) that minimise the redundancy while increasing the correlation
to the class vector [50]. The wrapper method adds up the features that minimise redundancy (Wi), and
maximise the relevance (Vi), with the best possible accuracy of an SVM classifier that uses a linear
kernel, as per the following equations:

Wi =
1

|S|2 ∑
i,j∈S

I(i, j) , (4)

and
Vi =

1
|S| ∑

i∈S
I(h, i) , (5)

where S is the set of features, I(i, j) is the mutual information between features (i, j), and h is the class,
in our case, the five Gleason groups.

4.3. Classification

The problem dealt with is multi-class classification, which was solved using the one-versus-rest
approach. There are five different classes, which correspond to the five distinct Gleason groups.
To apply a one-versus-rest approach, we created five different datasets from the actual data. For
each dataset, we set one of the classes to form the positive class, while the rest of the classes were
combined to form the negative class. The classification pipeline resembles a binary tree structure,
where each internal node is a binary classification problem (see Figure 2). Starting from the root, in
the one-versus-rest classification, we remove the samples that belong to the chosen class earlier. We
repeat the same steps of building datasets for the remaining four different classes. At each node, the
best class is chosen and the classification continues in the same fashion until two classes are left. To
select the best class at each node, different performance measures can be used; accuracy, sensitivity,
and specificity are used here. Note that the hierarchical model involves list processing, and as such,
any error at a particular node is propagated down the tree structure. In a greedy-like algorithm, we
minimise the error propagation by choosing the class with the highest accuracy at each internal node.

4.4. Identifying Transcripts within Different Gleason Scores

We used the Scitkit-learn [51] library to apply different classification algorithms to the final
transcripts selected. This step identifies which transcripts can decide a Gleason group from the others
based on their quantification values. Standard classifiers such as Naïve Bayes and SVM were used in
this study to build the classification model. Naive Bayes is a probability-based classifier that applies
the well-known Bayes’ theorem, while assuming that the features are independent of each other [52].
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While being simple, Naïve Bayes has been shown to perform very well in many problems and avoid
overfitting. An SVM classifier was also used to build a prediction model using the transcripts selected
in the previous step [53]. The advantage of SVM is its exceptional generalisation power, especially
in high-dimensional data with a small number of samples. Figure 8 shows the pipeline followed in
this study.

Figure 8. Machine learning pipeline used in the proposed method.

5. Conclusions and Future Directions

Identifying novel biomarkers that are clinically associated with specific Gleason groups in prostate
cancer is vital for the diagnosis and treatment of the disease. Utilising NGS data and machine learning
techniques, a supervised learning method was proposed to find group-specific sets of transcripts with
significant different levels of quantification values. The transcripts, along with the corresponding
genes, identified by the proposed machine learning method, were found in the literature to play crucial
roles in cancer pathogenesis; key transcripts were strongly correlated to prostate cancer. To validate
the model, we also tested it on a gene expression dataset, showing that the resulting genes are related
to prostate cancer progression.
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The work presented in this paper opens the way for future directions of research. One of these
is to apply and adjust the same method to other cancer types. Another possible avenue would be to
consider analysing samples from patients who have progressed through more than one Gleason group.
This method aims to eliminate confounding factors between patients, potentially leading to a clearer
analysis of differential gene expression between different grades of prostate cancer. In addition, a
multi-omics model based on different types of genomics data for this problem could be investigated,
which may provide a comprehensive analysis of the progression, diagnosis, and treatment of the
disease.

Author Contributions: L.R. was the principal investigator for this project who laid out the main ideas. N.P.
validated the idea; he shares senior authorship. O.H. and A.A. participated equally in implementing the methods,
and discussed the idea and the model with J.Z.Z., C.L., and S.K., who investigated the biological findings and
clinical aspects of the problem. D.C.-M. and G.A. analysed PIAS3 and UBE2VE roles in the JAK/STAT pathway.
All authors participated in writing the paper and approved the final manuscript.

Funding: This research was partially supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

NGS Next-generation sequencing
SVM Support vector machine
mRMR Minimum redundancy maximum relevance
IG Information Gain
RPKM reads per kilobase per million of reads
FPKM Fragments per kilobase per million of reads
TPM Transcripts per million of reads

References

1. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.; Piñeros, M.; Znaor, A.; Bray, F. Estimating
the global cancer incidence and mortality in 2018: Globocan sources and methods. Int. J. Cancer 2019, 144,
1941–1953. [CrossRef] [PubMed]

2. Gospodarowicz, M.; Benedet, L.; Hutter, R.V.; Fleming, I.; Henson, D.E.; Sobin, L.H. History and international
developments in cancer staging. Cancer Prev. Control CPC Prev. Controle en Cancerol. PCC 1998, 2, 262–268.

3. Edge, S.; Compton, C. The American Joint committee on cancer: The 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [CrossRef] [PubMed]

4. Gordetsky, J.; Epstein, J. Grading of Prostatic Adenocarcinoma: Current State and Prognostic Implications.
Diagn. Pathol. 2016, 11, 25. [CrossRef] [PubMed]

5. Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.;
Parwani, A.V.; Reuter, V.E.; Fine, S.W.; et al. A contemporary prostate cancer grading system: A validated
alternative to the Gleason score. Eur. Urol. 2016, 69, 428–435. [CrossRef]

6. Altschul, S.; Gish, W.; Miller, W.; Myers, E.; Lipman, D. Basic local alignment search tool. J. Mol. Biol. 1990,
215, 403–410. [CrossRef]

7. Trapnell, C.; Pachter, L.; Salzberg, S. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009,
25, 1105–1111. [CrossRef]

8. Dobin, A.; Davis, C.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.
STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef]

http://dx.doi.org/10.1002/ijc.31937
http://www.ncbi.nlm.nih.gov/pubmed/30350310
http://dx.doi.org/10.1245/s10434-010-0985-4
http://www.ncbi.nlm.nih.gov/pubmed/20180029
http://dx.doi.org/10.1186/s13000-016-0478-2
http://www.ncbi.nlm.nih.gov/pubmed/26956509
http://dx.doi.org/10.1016/j.eururo.2015.06.046
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1093/bioinformatics/bts635


Diagnostics 2019, 9, 219 15 of 17

9. Roberto, D.; Selvarajah, S.; Park, P.C.; Berman, D.; Venkateswaran, V. Functional validation of metabolic
genes that distinguish Gleason 3 from Gleason 4 prostate cancer foci. Prostate 2019, 79, 1777–1788. [CrossRef]

10. Alkhateeb, A.; Rezaeian, I.; Singireddy, S.; Cavallo-Medved, D.; Porter, L.; Rueda, L. newblock
Transcriptomics signature from next-generation sequencing data reveals new transcriptomic biomarkers
related to prostate cancer. Cancer Inform. 2019, 18, 1176935119835522. [CrossRef]

11. Arvaniti, A.; Fricker, K.; Moret, M.; Rupp, N.; Hermanns, T.; Fankhauser, C.; Wey, N.; Wild, P.; Rueschoff, J.;
Claassen, M. Automated gleason grading of prostate cancer tissue microarrays via deep learning. BioRxiv
2018, 8, 280024. [CrossRef] [PubMed]

12. Citak-Er, F.; Vural, M.; Acar, O.; Esen, T.; Onay, A.; Ozturk-Isik, E. Final gleason score prediction using
discriminant analysis and support vector machine based on preoperative multiparametric mr imaging of
prostate cancer at 3T. BioMed Res. Int. 2014, 2014, 690787. [CrossRef] [PubMed]

13. Hamzeh, O.; Alkhateeb, A.; Rezaeian, I.; Karkar, A.; Rueda, L. Finding transcripts associated with prostate
cancer gleason stages using next generation sequencing and machine learning techniques. In Proceedings of
the International Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, 26–28 April
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 337–348.

14. Prostate Adenocarcinoma TCGA-PRAD Dataset. 2019. Available online: https://portal.gdc.cancer.gov/
projects/TCGA-PRAD (accessed on 29 November 2019).

15. National Center for Biotechnology Information. Available online: http://www.ncbi.nlm.nih.gov (accessed
on 23 July 2019).

16. Zhao, Y.; Long, M.J.; Wang, Y.; Zhang, S.; Aye, Y. UBE2v2 is a rosetta stone bridging redox and ubiquitin
codes, coordinating dna damage responses. ACS Cent. Sci. 2018, 4, 246–259. [CrossRef] [PubMed]

17. Nicolas, E.; Arora, S.; Zhou, Y.; Serebriiskii, I.G.; Andrake, M.D.; Handorf, E.D.; Bodian, D.L.; Vockley, J.G.;
Dunbrack, R.L.; Ross, E.A.; et al. Systematic evaluation of underlying defects in dna repair as an approach to
case-only assessment of familial prostate cancer. Oncotarget 2015, 6, 39614. [CrossRef] [PubMed]

18. Santarpia, L.; Iwamoto, T.; Di Leo, A.; Hayashi, N.; Bottai, G.; Stampfer, M.; André, F.; Turner, N.C.;
Symmans, W.F.; Hortobágyi, G.N.; et al. DNA repair gene patterns as prognostic and predictive factors in
molecular breast cancer subtypes. Oncologist 2013, 18, 1063–1073. [CrossRef] [PubMed]

19. Schulz, W.; Ingenwerth, M.; Djuidje, C.; Hader, C.; Rahnenführer, J.; Engers, R. Changes in cortical
cytoskeletal and extracellular matrix gene expression in prostate cancer are related to oncogenic erg
deregulation. BMC Cancer 2010, 10, 505. [CrossRef]

20. Ji, Z.; Shi, X.; Liu, X.; Shi, Y.; Zhou, Q.; Liu, X.; Li, L.; Ji, X.; Gao, Y.; Qi, Y.; et al. The membrane-cytoskeletal
protein 4.1 n is involved in the process of cell adhesion, migration and invasion of breast cancer cells.
Exp. Ther. Med. 2012, 4, 736–740. [CrossRef]

21. Seabra, A.; Araújo, T.; Mello, F.; Alcântara, D.; De Barros, D.; De Assumpção, P.; Montenegro, R.; Guimarães,
A.; Demachki, S.; Burbano, R. High-density array comparative genomic hybridization detects novel copy
number alterations in gastric adenocarcinoma. Anticancer Res. 2014, 34, 6405–6415.

22. Ren, J.; Pan, X.; Li, L.; Huang, Y.; Huang, H.; Gao, Y.; Xu, H.; Qu, F.; Chen, L.; Wang, L.; et al. Knockdown of
gpr137, g protein-coupled receptor 137, inhibits the proliferation and migration of human prostate cancer
cells. Chem. Biol. Drug Des. 2016, 87, 704–713. [CrossRef]

23. Upadhyay, G.; Chowdhury, A.H.; Vaidyanathan, B.; Kim, D.; Saleque, S. Antagonistic actions of rcor
proteins regulate LSD1 activity and cellular differentiation. Proc. Natl. Acad. Sci. USA 2014, 111, 8071–8076.
[CrossRef]

24. Wang, L.; Banerjee, S. Differential pias3 expression in human malignancy. Oncol. Rep. 2004, 11, 1319–1324.
[CrossRef] [PubMed]

25. Vassikis, V.J.; Do, K.A.; Wen, S.; Wang, X.; Cho-Vega, J.H.; Brisbay, S.; Lopez, R.; Logothetis, C.J.; Troncoso, P.;
Papandreou, C.N.; et al. Clinical and biomarker correlates of androgen-independent, locally aggressive
prostate cancer with limited metastatic potential. Clin. Cancer Res. 2004, 10, 6770–6778. [CrossRef] [PubMed]

26. Gross, M.; Liu, B.; Tan, J.; French, F.; Carey, M.; Shuai, K. Distinct effects of PIAS proteins on
androgen-mediated gene activation in prostate cancer cells. Oncogene 2001, 20, 3880. [CrossRef] [PubMed]

27. Ueki, N.; Seki, N.; Yano, K.; Saito, T.; Masuho, Y.; Muramatsu, M. Isolation and chromosomal assignment
of a human gene encoding protein inhibitor of activated stat3 (pias3). J. Hum. Genet. 1999, 44, 193–196.
[CrossRef]

http://dx.doi.org/10.1002/pros.23903
http://dx.doi.org/10.1177/1176935119835522
http://dx.doi.org/10.1038/s41598-018-30535-1
http://www.ncbi.nlm.nih.gov/pubmed/30104757
http://dx.doi.org/10.1155/2014/690787
http://www.ncbi.nlm.nih.gov/pubmed/25544944
https://portal.gdc.cancer.gov/projects/TCGA-PRAD
https://portal.gdc.cancer.gov/projects/TCGA-PRAD
http://www.ncbi.nlm.nih.gov
http://dx.doi.org/10.1021/acscentsci.7b00556
http://www.ncbi.nlm.nih.gov/pubmed/29532025
http://dx.doi.org/10.18632/oncotarget.5554
http://www.ncbi.nlm.nih.gov/pubmed/26485759
http://dx.doi.org/10.1634/theoncologist.2013-0163
http://www.ncbi.nlm.nih.gov/pubmed/24072219
http://dx.doi.org/10.1186/1471-2407-10-505
http://dx.doi.org/10.3892/etm.2012.653
http://dx.doi.org/10.1111/cbdd.12704
http://dx.doi.org/10.1073/pnas.1404292111
http://dx.doi.org/10.3892/or.11.6.1319
http://www.ncbi.nlm.nih.gov/pubmed/15138572
http://dx.doi.org/10.1158/1078-0432.CCR-04-0275
http://www.ncbi.nlm.nih.gov/pubmed/15501953
http://dx.doi.org/10.1038/sj.onc.1204489
http://www.ncbi.nlm.nih.gov/pubmed/11439351
http://dx.doi.org/10.1007/s100380050141


Diagnostics 2019, 9, 219 16 of 17

28. Schmidt, D.; Müller, S. Pias/sumo: New partners in transcriptional regulation. Cell. Mol. Life Sci. 2003, 60,
2561–2574. [CrossRef]

29. Shuai, K. Regulation of cytokine signaling pathways by pias proteins. Cell Res. 2006, 16, 196. [CrossRef]
30. Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/Stat signaling pathway. J. Cell Sci. 2004, 117, 1281–1283.

[CrossRef]
31. Tam, L.; McGlynn, L.M.; Traynor, P.; Mukherjee, R.; Bartlett, J.M.; Edwards, J. Expression levels of the

jak/stat pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br. J.
Cancer 2007, 97, 378. [CrossRef]

32. Rycyzyn, M.A.; Clevenger, C.V. The intranuclear prolactin/cyclophilin b complex as a transcriptional
inducer. Proc. Natl. Acad. Sci. USA 2002, 99, 6790–6795. [CrossRef]

33. Ahonen, M.; Poukkula, M.; Baker, A.H.; Kashiwagi, M.; Nagase, H.; Eriksson, J.E.; Kähäri, V.M. Tissue
inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors.
Oncogene 2003, 22, 2121. [CrossRef]

34. Li, H.; Ahonen, T.J.; Alanen, K.; Xie, J.; LeBaron, M.J.; Pretlow, T.G.; Ealley, E.L.; Zhang, Y.; Nurmi, M.;
Singh, B.; et al. Activation of signal transducer and activator of transcription 5 in human prostate cancer is
associated with high histological grade. Cancer Res. 2004, 64, 4774–4782. [CrossRef] [PubMed]

35. Li, H.; Zhang, Y.; Glass, A.; Zellweger, T.; Gehan, E.; Bubendorf, L.; Gelmann, E.P.; Nevalainen, M.T.
Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence.
Clin. Cancer Res. 2005, 11, 5863–5868. [CrossRef] [PubMed]

36. Liao, Y.C.; Lo, S.H. Deleted in liver cancer-1 (dlc-1): A tumor suppressor not just for liver. Int. J. Biochem.
Cell Biol. 2008, 40, 843–847. [CrossRef] [PubMed]

37. Tan, S.H.; Nevalainen, M.T. Signal transducer and activator of transcription 5a/b in prostate and breast
cancers. Endocr.-Relat. Cancer 2008, 15, 367–390. [CrossRef]

38. Dagvadorj, A.; Kirken, R.A.; Leiby, B.; Karras, J.; Nevalainen, M.T. Transcription factor signal transducer and
activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin. Cancer Res. 2008,
14, 1317–1324. [CrossRef] [PubMed]

39. Dagvadorj, A.; Tan, S.H.; Liao, Z.; Xie, J.; Nurmi, M.; Alanen, K.; Rui, H.; Mirtti, T.; Nevalainen, M.T.
N-terminal truncation of stat5a/b circumvents pias3-mediated transcriptional inhibition of stat5 in prostate
cancer cells. Int. J. Biochem. Cell Biol. 2010, 42, 2037–2046. [CrossRef]

40. Long, Q.; Xu, J.; Osunkoya, A.O.; Sannigrahi, S.; Johnson, B.A.; Zhou, W.; Gillespie, T.; Park, J.Y.; Nam,
R.K.; Sugar, L.; et al. Global transcriptome analysis of formalin-fixed prostate cancer specimens identifies
biomarkers of disease recurrence. Cancer Res. 2014, 74, 3228–3237. [CrossRef] [PubMed]

41. Leinonen, R.; Sugawara, H.; Shumway, M.; International Nucleotide Sequence Database Collaboration.
The sequence read archive. Nucleic Acids Res. 2010, 39 (Suppl. 1), D19–D21. [CrossRef]

42. Li, B.; Dewey, C. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference
genome. BMC Bioinform. 2011, 12, 1. [CrossRef]

43. Trapnell, C.; Hendrickson, D.; Sauvageau, M.; Goff, L.; Rinn, J.; Pachter, L. Differential analysis of gene
regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 2013, 31, 46–53. [CrossRef]

44. Mortazavi, A.; Williams, B.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [CrossRef] [PubMed]

45. Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.;
Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [CrossRef] [PubMed]

46. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

47. Laurikkala, J. Improving Identification of Difficult Small Classes by Balancing Class Distribution; Tech. Rep.
A-2001-2; University of Tampere: Tampere, Finland, 2001.

48. Trunk, G.V. A problem of dimensionality: A simple example. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1,
306–307. [CrossRef]

49. Novakovic, J. Using information gain attribute evaluation to classify sonar targets. In Proceedings of the
17th Telecommunications forum TELFOR, Serbia, Belgrade, 24–26 November 2009; pp. 24–26.

50. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

http://dx.doi.org/10.1007/s00018-003-3129-1
http://dx.doi.org/10.1038/sj.cr.7310027
http://dx.doi.org/10.1242/jcs.00963
http://dx.doi.org/10.1038/sj.bjc.6603871
http://dx.doi.org/10.1073/pnas.092160699
http://dx.doi.org/10.1038/sj.onc.1206292
http://dx.doi.org/10.1158/0008-5472.CAN-03-3499
http://www.ncbi.nlm.nih.gov/pubmed/15256446
http://dx.doi.org/10.1158/1078-0432.CCR-05-0562
http://www.ncbi.nlm.nih.gov/pubmed/16115927
http://dx.doi.org/10.1016/j.biocel.2007.04.008
http://www.ncbi.nlm.nih.gov/pubmed/17521951
http://dx.doi.org/10.1677/ERC-08-0013
http://dx.doi.org/10.1158/1078-0432.CCR-07-2024
http://www.ncbi.nlm.nih.gov/pubmed/18316550
http://dx.doi.org/10.1016/j.biocel.2010.09.008
http://dx.doi.org/10.1158/0008-5472.CAN-13-2699
http://www.ncbi.nlm.nih.gov/pubmed/24713434
http://dx.doi.org/10.1093/nar/gkq1019
http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1038/nbt.2450
http://dx.doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
http://dx.doi.org/10.1038/nbt.1621
http://www.ncbi.nlm.nih.gov/pubmed/20436464
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/TPAMI.1979.4766926
http://dx.doi.org/10.1109/TPAMI.2005.159


Diagnostics 2019, 9, 219 17 of 17

51. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830.

52. Domingos, P.; Pazzani, M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach.
Learn. 1997, 29, 103–130. [CrossRef]

53. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]

Sample Availability: https://luisrueda.myweb.cs.uwindsor.ca/datasets/Hierarchical-Prostate-Cancer-Gleason.
rar.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1007413511361
http://dx.doi.org/10.1007/BF00994018
https://luisrueda.myweb.cs.uwindsor.ca/datasets/Hierarchical-Prostate-Cancer-Gleason.rar
https://luisrueda.myweb.cs.uwindsor.ca/datasets/Hierarchical-Prostate-Cancer-Gleason.rar
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	Discussion
	Materials and Methods
	Class Imbalance
	Feature Selection
	Classification
	Identifying Transcripts within Different Gleason Scores

	Conclusions and Future Directions
	References

