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Abstract
Prostate cancer (Pca) is one of the most common cancers among men worldwide. The current screening 
methods lack effectiveness such as prostate-specific antigen (PSA) and Magnetic resonance imaging (MRI), 
and some others come with pain such as biopsy. Understanding the genomic behavior of the disease may 
play a key part in designing more effective, accurate, and less invasive diagnosis measures. Pca has many 
clinical features to describe the spread and the aggressiveness of the tumor including Gleason score, TNM 
staging system, and the location of the tumor in the prostate gland which is known as laterality.

Machine learning models were recently utilized to predict the outcomes of Pca, and to find potential 
biomarkers for the clinical features of the disease. In this study, we review recent machine learning methods 
for finding biomarkers for Pca clinical features including Pca progression, Gleason score, and laterality. The 
supervised models were built on gene expressions and next-generation sequencing data to find genes 
or genes transcripts that are associated with these clinical features. The results show high performance in 
the three models with an accuracy of more than 90%. The three models reported many biomarkers genes 
and genes transcripts including but not restricted to CARNA22, DOCK9, FLVCR2, IK2F3, USP13, PTGFR, 
and CLASP1 genes for Pca progression.  UBE2V2, GPR137, and EPB41L1 for different Gleason scores. And 
FBXO21, RTN1, NDUFA5, ALG5, Z99129, SNAI2, MRI1, HLA-DMB, SRSF6, and EIF4G2 for laterality prediction.
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Introduction

Pca screening models are not efficient in the diagnosis of the disease. Alanee et al. reported 33 
patients out of 156 who underwent prostatectomy for Pca Gleason ≥ 3+4 diagnosed on prostate 
biopsy had negative MRI results [1]. PSA level which can be measured in a blood test with less pain 
than biopsy is found to save much life by early detecting cancer. However, not every high level of PSA 
means the existence of Pca, and some Pca patients may not show a high level of PSA in their blood test 
[2,3]. TNM staging system describes the amount and spread of cancer in a patient’s body. T describes 
the size of the tumor and any spread of cancer into nearby tissue; N describes the spread of cancer to 
nearby lymph nodes; M describes metastasis (spread of cancer to other parts of the body) [4].    

Identifying genomic biomarkers for prostate cancer (Pca) is gaining research interests due to the 
advances of the emerging next-generation sequencing (NGS) technology [5]. NGS provides a deep 
insight into the gene transcription events in cancer cells and increases the sensitivity of detecting genes 
relationships [6]. NGS generates a huge amount of data with some artifacts, and pre-processing the 
data is highly recommended [7]. Genomic data such as gene expression and RNA-Seq data provide 
an insight into the genomic activity in the tumor tissue which leads to a better understanding of the 
development of the disease.

In this communication, we are surveying three classification models to predict the outcome of 
the Pca using RNA-Seq data. The first model is to extract potential biomarkers for Pca progression, 
where the classes of the models represent different TNM stages/sub-stages [8]. The second model to 
predict different Gleason scores [9,10]. The third model to predict the laterality of the tumor in the 
prostate gland [11]. Identifying the laterality of Pca can help to determine candidates for hemiablation 
of the prostate using focal therapy while preserving the contralateral lobe [12]. Most of the early 
detected cases have the tumor in a specific location in the gland, and for these cases, focal therapy can 
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minimize negative side effects that may result from prostatectomy 
and radiation. The side effects of these extreme procedures include 
urinary incontinence, erectile dysfunction and bowel toxicity [13]. 
These three models can be investigated to find biomarkers that have 
better accuracy, more efficient, and less invasive than the current 
diagnosis approaches [14].

Materials & Methods 

In this communication, the methods were applied to the 
following datasets:

- Long et al. data set that contains RNA-Seq data for 104 
samples from 100 patients. The clinical data includes information 
about the TNM stage and Gleason score [15].

- Kannan et al. data set RNA-Seq for 20 human prostate 
cancer tissues and 10 matched benign from patients who had 
received no preoperative therapy prior to radical prostatectomy 
[16].

- Prostate adenocarcinoma (TCGA-PRAD) data set that 
contains gene expressions for 498 prostate cancer patient samples 
with different Gleason scores [17].

Preprocessing

RNA-Seq datasets were preprocessed by Zseq RNA-Seq reads 
filter [7] first, then aligned to the human genome using Tophat2 
[18] for Long and Kannan datasets to study the progression and 
Long datasets using STAR [19] to analyze different Gleason score 
biomarkers. Then Cufflinks [20] and RSEM [21] were used to 

construct the genes transcripts for Tophat2 and STAR outputs. 
Finally, the transcript constructor quantifies the reads on the 
transcripts to measure the expressions using transcripts per million 
of reads (TPM) measure. Figure 1 shows the preprocessing pipeline.

Feature Selection

To remove any irrelevant genes transcript quantifications such as 
inactive genes and housekeeping genes, we applied the Information 
Gain (IG) feature selection method to rank the features based on 
the coloration with the class, then the minimum Redundancy 
Maximum Relevance (mRMR) wrapper method [22] was applied 
on the ranked genes to identify the potential biomarkers genes for 
the better prediction performance. Table 1 depicts the used methods 
on each data set for specific prostate cancer problem. mRMR is 
wrapped on a standard machine learning machine to achieve high-
performance measurements. The utilized classifiers for each Pca 
problem are demonstrated in the next subsection.

Dataset Feature ranking 
method The problem

Long et al dataset mRMR Pca Progression

Long et al dataset IG and mRMR Pca Gleason score 

TCGA-PRAD IG and mRMR Pca Gleason score

TCGA-PRAD IG and mRMR Pca Laterality

Table 1: The feature method approaches used on the studied data sets 
to predict different Pca outcomes.

 

 
  

Figure 1:  RNA-Seq data preprocessing pipeline.
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Prediction Models

The preprocessed datasets are fed to the prediction models. 
Different machine learning classification models were utilized to find 
potential biomarkers genes that can predict different outcomes of 
Pca as the following:

Pca Progression

Multiple prediction models for each consecutive Pca stages/sub-
stages were built to extract biomarkers that can predict progression 
in each step. Each pair of consecutive stages’ samples, namely, T2a-
T2b, T2b-T2c, T2c-T3a, and T2c-T3/T4 was fed to the mRMR 
wrapper based on support vector machine (SVM) [23] classifier to 
select the transcripts that increased the accuracy of the prediction 
model. These discriminative transcripts can distinguish each stage/
sub-stage from the earlier one.

The initial study has analyzed the transitions for the pairs of 
T1c-T2, T2-T2a, and T3a-T3b, but we decided to not include 
them in this study. According to world health organization (WHO) 
definition, T2 encompasses T2a, T2b, and T2c, therefore T2 to 
T2a does not mean disease progression. Likewise, T3a and T3b 
are defined as extra-prostatic invasion and seminal vesicle invasion, 
respectively, and T3a to T3b does not mean disease progression [24]. 
The transition from T1c sub-stage, which is diagnosed by needle 
biopsy, to T2 which is diagnosed by prostatectomy may not mean 
progression, because their difference is the way of sampling.   

Pca Gleason Score

Unlike the pairwise Pca progression model, this model was 
constructed as a class versus the rest-based prediction model, where 

a specific Gleason score’s samples will be classified versus the rest 
of the samples. The greedy hierarchical model starts with the class 
that produces the best accuracy when it is classified versus the rest. 
Then the samples of the already classified class will be removed and 
the next node will consider the best performance class among the 
remaining. The process continues until it reaches 2 remaining classes 
down the hierarchy as seen in Figure 2. The considered Gleason 
scores were group based on Epstein model [25] where any score <=6 
is considered as one group and named as group 6. The considered 
groups are 6, 3+4=7, 4+3=7, 8, and (9 and 10) are combined due 
to the low number of samples in each of them. Naïve Bayes [26] 
classifier was used with mRMR wrapper feature selection.

Pca Laterality

The purpose of this model is to identify the active genes that can 
predict the location of the tumor in the prostate gland. The model 
considers the three laterals which are left, right, and bi-lateral as the 
classes of the model. The model is constructed as one versus the 
others, so basically, it has 3 classifiers for each class’s samples versus 
the others. SVM with radial based function (RBF) kernel was used 
with the mRMR wrapper method.

Results

The proposed method for the Pca progression was compared 
to the well-known CuffDiff statistical approach which is part of 
Cufflinks package. The proposed model outperformed CuffDiff 
in all the pairwise prediction stages as seen in Table 2. In Table 2 
the performance measurements are the accuracy (ACC), F-measure 
(FM), Matthews correlation coefficient (MCC), and area under the 
curve (AUC).

 
  Figure 2:  The hierarchical prediction model for Gleason scores (one-versus-rest) based on the quantification of the genes transcripts.
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Gleason score prediction model that incorporates Naïve Bayes 
classifier was compared to the other standard classifier and found to 
outperform them. Table 3 shows the performance measurements of 
the proposed method.

In the Laterality model, the results of the three classification 
systems to discover lateral gene biomarkers are shown in Table 4. 
SVM RBF outperformed Naïve Bayes and Random forest classifiers 
[27] in the three systems.

Stage Method
# Selected  
Transcripts

# Common  
Transcripts

ACC FM MCC AUC

T2A-T2B
(23 vs. 11)

CuffDiff 35
0

64.7% 0.601 0.068 0.634

Proposed Method 6 85.3% 0.851 0.657 0.826

T2B-T2C
(11 vs. 30)

CuffDiff 38
0

65.8% 0.647 0.078 0.645

Proposed Method 5 87.8% 0.880 0.699 0.885

T2C-T3A
(30 vs. 8)

CuffDiff 29
0

73.7% 0.722 0.130 0.612

Proposed Method 5 89.4% 0.895 0.683 0.948

T2C-T3/T4
(30 vs. 17)

CuffDiff 49
0

57.4% 0.568 0.055 0.483

Proposed Method 12 95.7% 0.957 0.908 0.988

 Table 2: The comparison between the proposed prediction model versus CuffDiff approach for pairwise Pca stages/sub-stages based on the 
quantification of the ranked genes transcripts.

Gleason Group ACC FM MCC AUC

3 + 4 = 7 vs. Rest 94 0.94 0.88 95

4 + 3 = 7 vs. Rest 98 0.98 0.96 99

6 vs. Rest 100 1 1 100

8 vs. (9 and 10) 100 1 1 100

 Table 3: Performance measurements of the Pca Gleason scores prediction model based on the gene’s transcripts quantification.

Classifier Accuracy Precision Accuracy Precision Accuracy Precision

SVM RBF 99 97 99 97 99 97

Naive Bayes 88 78 82 78 80 78

Random Forest 93 85 90 85 95 85

 Prediction Model Left vs. rest Bilateral vs. rest Right vs. rest

 Table 4: The comparison between SVM RBF, Naive Bayes, and Random forest in the three classification models left vs rest, Bilateral vs rest, right vs 
rest for the laterality prediction. The performance measurements are the accuracy and precision.
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The three prediction models reported many potential gene 
transcripts biomarkers for Pca. Pca progression model reported that 
the upregulation of the gene expression of the small Cajal body-
specific RNA (SCARNA22) from stages T2c  to T3/T4. It also 
reported transcripts from the genes DOCK9, FLVCR2, IK2F3, 
USP13, PTGFR, and CLASP1 can potentially identify the same 
progression.

In the second model, many gene transcripts have differentially 
expressed among different Gleason scores. The model revealed 
that transcripts of genes GPR137 and EPB41L1 is associated with 
tumors of Gleason scores 3+4=7 and 8, respectively. It also reported 
differential gene transcripts quantifications of  PIAS3  and Rest 
Corepressor 3 (Rcor3) were both associated with tumors of Gleason 
score 4+3=7. A different quantification of the UBE2V2 transcript 
was able to predict non-advanced Pca with Gleason score 6.

The laterality model revealed some genomic activity that is 
related with the location of the cancer in prostate gland. Differential 
gene expression of FBXO21, RTN1, NDUFA5, and POP7 genes 
can predict the tumor in the left side of the gland. While that of 
HLA-DMB, SRSF6, EIF4G2 can predict it in the right side. Finally, 
ALG5, Z99129, SNAI2, MRI1 genes can predict the bilateral tumor.

Discussion

Finding the signature of Pca outcomes can assist in understanding 
the development of the disease. The identified biomarkers should 
be validated using wet-lab experiments, and analyze the produced 
proteins to design less invasive approaches such as blood or urine 
test. To the top of our knowledge, the three models are novel when it 
comes to finding signature gene biomarkers for the Pca progression, 
Gleason scores, and laterality. The models will bring more attention 
to the area of understanding of the Pca molecular based rather than 
the visual attributes of the tissue. 

As for now, the current models are designed to predict the 
outcomes based on genomic profiling including gene expressions 
and RNA-Seq. However, the set of biomarkers can be analyzed 
using pathways databases and wet-lab experiments to measure 
the expressions or quantifications of the biomarkers in the blood 
or urine, which can determine the Pca outcome based on these 
measures. Drugs can be designed or repurposed for prescriptions to 
target the identified biomarkers from the three models.

Conclusion

Thanks to the advancement of NGS technology, machine 
learning models based on RNA-Seq data can be used to find a 
newer gene biomarker for Pca. These biomarkers may substitute the 
current Pca diagnostic methods. The genomic activity may reveal the 
mechanism of the Pca progression, aggressiveness, and location. The 
findings of the three models needs to undergo an extensive validation 
process using computational methods such as pathway analysis, and 
wet lab experiments. 
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