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ABSTRACT

Next-generation sequencing technology generates a huge number of reads (short sequences),
which contain a vast amount of genomic data. The sequencing process, however, comes with
artifacts. Preprocessing of sequences is mandatory for further downstream analysis. We
present Zseq, a linear method that identifies the most informative genomic sequences and
reduces the number of biased sequences, sequence duplications, and ambiguous nucleotides.
Zseq finds the complexity of the sequences by counting the number of unique k-mers in
each sequence as its corresponding score and also takes into the account other factors such
as ambiguous nucleotides or high GC-content percentage in k-mers. Based on a z-score
threshold, Zseq sweeps through the sequences again and filters those with a z-score less than
the user-defined threshold.

Zseq algorithm is able to provide a better mapping rate; it reduces the number of
ambiguous bases significantly in comparison with other methods. Evaluation of the filtered
reads has been conducted by aligning the reads and assembling the transcripts using the
reference genome as well as de novo assembly. The assembled transcripts show a better
discriminative ability to separate cancer and normal samples in comparison with another
state-of-the-art method. Moreover, de novo assembled transcripts from the reads filtered by
Zseq have longer genomic sequences than other tested methods. Estimating the threshold of
the cutoff point is introduced using labeling rules with optimistic results.
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1. INTRODUCTION

In the last decade, next-generation sequencing (NGS) technology has evolved rapidly, reducing the cost

of genome sequencing and influencing the progression of cancer research and other fields. The main

purpose of NGS studies is to find clues to gene and protein structures and functions in the sequenced reads.
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However, this advanced technology can also produce unexpected artifacts (Waszak et al., 2014; Lavezzo

et al., 2016). Some of these artifacts come from cDNA library preparation; those are repetitive low-complex

regions that appear in the sequenced reads (Mackinnon et al., 2009). High GC content is also a common bias

due to cDNA library preparation, while GC content tends to last more in the preparation process (Yakovchuk

et al., 2006). GC-content bias in reads is also known to aggravate genome assembly, and hence it may result in

poor genome assembly. Nevertheless, the sequencing procedure itself can produce low-complex repetitive

regions such as a sequence of ambiguous nucleotides. In general, it is not clear to what extent GC-content bias

affects genome assembly (Chen et al., 2013).

A low-complexity sequence of nucleotides has highly biased distribution of nucleotides in a way that makes

the sequence less diverse of unique k-mers of nucleotides. The lower the complexity of a sequence, the more

likely that the sequence will be mapped to different parts of the genome. In other words, when we process low-

complex sequences, there is less chance that we can align it to a specific part of the genome uniquely. This low

level of certainty regarding the real position of a sequence makes it less desirable to be used.

Poly A/Poly T is a chain of A or T, used to prime the three and five sites in a genome sequence during

cDNA library preparation (Brown, 2012). Poly A/T sequences may cause bias in the reads. The intronic

Poly A/T tails tend to splice out rather than staying between coding exons (Zhao et al., 2014). The GC

content represents the ratio of a G-C pair in the genome sequence. The stop codons show a significantly

high ratio of A-T nucleotides (Wuitschick and Karrer, 1999), while coding codons have a higher GC

content (Pozzoli et al., 2008). The GC content of a gene plays an important role in carrying the genetic

information. The GC content of the human genome varies among different chromosomes. However, the

average GC content of the human genome is 41% (Vogel, 1997). The representation of A+T sequences can

FIG. 1. Schematic representation of the process

for filtering reads using the Zseq method.
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be significantly lower, because in the preparation of a standard library, a gel slice is used and heated up to

50�C, thereby increasing the bias of the GC content (Quail et al., 2008).

There are different techniques that try to remove those sequences with low-complex patterns from

samples. Morgulis et al. (2006) presented the symmetric DUST method, which masks low-complex regions

in a sequence to overcome context sensitivity in calculating the complexity score. Schmieder and Edwards

(2011) proposed two methods to evaluate the sequence complexity. The first method is based on entropy as

a measure. The second method, which is a variant of the DUST algorithm based on BLAST search, filters

out the low-complex score sequences. Both methods consider each triplet of nucleotides as a word.

One of the downsides of the previous methods is that they focus only on the complexity of the sequences.

This can be misleading in some cases due to the highly biased nature of the sequences. In this article, we

propose a novel method called Zseq, which decreases the uniqueness score of highly biased regions,

thereby filtering highly biased sequences and low-complex sequences.

2. METHODS

The z-score measurement has been used in different applications in bioinformatics (Cheadle et al., 2003;

Margulies et al., 2005). Chopping sequence into k-mers is an essential technique in read assembly. We

FIG. 2. Distribution of the normalized

uniqueness scores for all reads in sample

(SRR202054) (l = 25:8169‚ r = 7:1681).

FIG. 3. Distribution of the z-scores of the nor-

malized uniqueness scores corresponding to each

read for sample (SRR202054).
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present the Zseq algorithm that uses the z-score measurement based on uniqueness scores of all reads. The

uniqueness score is the normalized number of unique k-mers in each read that takes low-complex regions

into account. Figure 1 depicts the process of finding reads with improved quality. Each module is explained

in detail in the next few paragraphs.

In the first step, Zseq scans all the reads and calculates the uniqueness score for all reads. The uniqueness

score corresponding to each read is equal to the number of unique k-mers in that read. Zseq considers the

default k-mer size, w, as 4-mers, which makes the vocabulary of four nucleotides (A,T,C,G) to be 44 = 256

words. As the long reads may contain thousands of nucleotides, the 3-mer size is not sufficient to measure

the complexity of the reads. This is because a 3-mer word can exist many times in the same read without

being considered as unique, even when it is associated with different nucleotides each time. Zseq excludes

the 5-mers of the low-complex/biased artifacts, such as ambiguous bases (N), PolyA/T, and GC content,

from being unique by decreasing the unique score of the reads by one for each 2w to reduce the chances of

selecting this sequence later. The uniqueness score of each read is then normalized by dividing it by the

length of the read. The normalized uniqueness scores of all reads are stored in a vector with the same order

of the read in the input file.

Figure 2 shows the distribution of the normalized uniqueness scores for all reads for sample SRR202054

from the prostate cancer data set used in the study of Kim et al. (2011). The x-axis shows the normalized

uniqueness scores, while the y-axis shows the number of reads. As shown in the figure, the penalized

sequences have a very small score down to -30. These are sequences that have been generated using reads that

contain long PolyA/T sequences, very high GC content, or very high number of ambiguous nucleotides (N).

In the next step, Zseq calculates the mean and standard deviation for the normalized uniqueness scores.

The mean of the normalized uniqueness scores of all reads is calculated in the first loop. The variance is

FIG. 4. Percentage of GC content for all filtered reads using the Zseq histogram with l = 52:63% and r = 12:08%.

FIG. 5. Percentage of GC content for all filtered reads using the DUST histogram with l = 53:09% and r = 12:36%.
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also calculated linearly using a naive algorithm to reduce the cost of this step. The standard deviation is

calculated from the variance of the vector of the normalized uniqueness scores.

Next, for each normalized uniqueness score, we calculate the z-score using the mean, l, and the standard

deviation, r, as follows:

z = (s - l)=r: (1)

The z-score represents how many standard deviations the normalized uniqueness score of the read is

away from the mean l for all normalized uniqueness scores. In other words, if a read has a z-score of 0, it

means that the read has the normalized uniqueness score of l, while a z-score of value 1 means that the

normalized uniqueness score is away exactly one standard deviation from the l. Figure 3 shows the z-scores

for all reads in the sample (SRR202054), where the x-axis is the z-score of the normalized uniqueness

scores, while the y-axis indicates how many reads a particular z-score has in the sample.

Finally, the user-adjustable threshold h is used to determine whether or not to select the reads, if the z-

score of the normalized uniqueness score of the reads is greater than or equal to h, the read will be selected;

otherwise, it will be filtered out.

2.1. Estimating the cutoff point

A data-driven method based on the labeling rules is used to filter out the reads with low uniqueness score.

The method automatically determines the cutoff point c to compensate h in the histogram of reads

uniqueness scores and removes those reads whose uniqueness score is less than c. The labeling rules model

calculates the rst quartile q1 and third quartile q3 using mean and standard deviation, both of which are in

the rst loop through the reads. The cutoff point is calculated as follows:

c = q1 - g(q3 - q1)‚ (2)

where g is the g-factor that can be calculated as follows:

g = (h - q1)=h‚ (3)

with h being the highest value in the histogram of reads’ uniqueness scores. After calculating the cutoff

point c, the method sweeps again throughout the reads and selects those that have uniquenessscore >= c.

Table 1. Comparison of the Results of Applying Zseq on Samples from the Prostate Cancer

Data Set as a Result of Applying DUST on the Same Samples

Sample

number

Original Zseq DUST

Occurrences

of N

Mean GC

content (%)

Mapping

rate (%)

Occurrences

of N

Mean GC

content (%)

Mapping

rate (%)

Occurrences

of N

Mean GC

content (%)

Mapping

rate (%)

SRR202054 40,690 52.82 – 14.06 91.50 11,135 52.61 – 12.20 93.00 19,177 52.89 – 12.33 92.80

SRR202055 42,965 53.01 – 13.74 91.20 9336 52.48 – 12.10 92.40 19,470 52.91 – 12.38 92.10

SRR202056 40,243 52.94 – 13.99 91.40 10,721 52.67 – 12.22 92.80 18,336 52.95 – 12.36 92.60

SRR202057 42,630 52.94 – 13.94 91.30 10,403 52.65 – 12.22 92.60 20,018 52.93 – 12.36 92.40

SRR202058 16,643 53.12 – 14.03 91.00 14,023 52.63 – 12.08 92.40 16,198 53.09 – 12.36 92.30

SRR202059 17,741 52.56 – 13.88 90.70 14,042 52.18 – 12.02 92.00 17,091 52.61 – 12.28 91.90

SRR202060 19,958 53.44 – 13.98 90.90 13,775 53.23 – 12.09 92.40 17,281 53.51 – 12.21 92.30

SRR202061 2156 50.06 – 11.50 77.00 1849 48.87 – 9.96 79.20 2100 49.95 – 11.12 77.90

SRR202062 5837 52.81 – 13.64 69.10 5122 52.69 – 11.77 71.30 5466 52.91 – 11.84 71.30

FIG. 6. Biologically meaningful

human genomic sequences found

using BLAST. De novo assembled

transcripts using original reads.
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3. RESULTS

In our experiments, we used the prostate cancer data set utilized in the study by Kim et al. (2011). The

data set is publicly available in NCBI Gene Expression Omnibus (GEO) under Accession No. GSE29155. It

contains 11 samples in total, where 7 of them belong to tumor tissues and the remaining 4 samples are

benign. We measured the GC content and the number of ambiguous bases of the outcomes of each method,

and then aligned the results of both methods to the human genome using Tophat2 as the alignment method

(Kim et al., 2013).

DUST takes a value that ranges from 0 and 100 as the complexity threshold, while Zseq takes a z-score

value as a complexity threshold, which shows how many standard deviations the normalized uniqueness

score of the read is away from the mean. For the DUST method, we chose the value 5 as the threshold,

which means that the value of the complexity of the read has to be greater than or equal to 5 to be selected;

otherwise, DUST will ignore the read. For Zseq, we have chosen -1.5 as the value of the threshold, which

makes the read good to be selected if the z-score of that read is greater than or equal to -1.5. The reason

behind selecting these two thresholds is that both methods filter almost the same number of reads in each

sample. The filtered reads using Zseq have less GC content than the filtered reads using DUST. It also has

smaller standard deviation, which makes the reads centered more around the mean than DUST. Figures 4

and 5 show the GC-content distributions for both methods applied on the same sample set (SRR202058).

Zseq shows a slight improvement in reducing the GC content, mapping rate, and mapping time, while

dropping the number of ambiguous bases drastically in comparison with DUST. Table 1 shows that the

number of ambiguous bases, N, in the filtered reads using Zseq has drastically decreased compared with the

ambiguous bases that have been filtered out using DUST in all samples. For example, the number of

occurrences of N in sample SRR202054 for filtered reads by DUST is 19,177, while there are only 11,135

filtered reads using Zseq for the same sample. The results indicate that Zseq slightly shrunk the GC-content

percentage distribution and reduced the mean of the GC-content percentage. For sample SRR202055, the

mean of the GC content is 52.48% – 12.10% using Zseq, which is less than the 52.91% – 12.38% obtained

FIG. 7. Biologically meaningful

human genomic sequences found

using BLAST. De novo assembled

transcripts using reads filtered by

DUST.

FIG. 8. Biologically meaningful

human genomic sequences found

using BLAST. De novo assembled

transcripts using reads filtered by

Zseq.
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using the DUST method. Zseq also shows better mapping alignment for the filtered reads than DUST for

most of the samples. For example, in sample SRR202061, the reads filtered by Zseq have 79.20% mapping

rate, which is greater than 77.90% mapping rate for reads filtered by DUST, the only exception is sample

SRR202062, which shows a similar mapping rate of 71.30% for both DUST and Zseq.

3.1. De novo sequence validation

Using Trinity de novo assembler (Grabherr et al., 2011), transcripts have been reconstructed for the

original reads of sample SRR202058, reads that have been filtered by DUST and reads that have been

filtered by Zseq. In the next step, all three sets of constructed transcripts were evaluated by searching the

assembled transcripts with the human genome sequences using BLAST (Altschul et al., 1997). The set of

the reconstructed transcript using the filtered reads by Zseq contains a higher number of long sequences in

comparison with the other two sets. Figures 6, 7, and 8 show the meaningful sequences for each set. Some

of the sequences, which were built using the reads filtered by Zseq, have a length of 1000 bp or more along

with a high alignment score, while the sequence length is slightly more than 300 bp using the reads filtered

by DUST and 200 bp for the original reads without filtering.

3.2. Machine learning validation

In another experiment, we used an independent data set containing 12 samples (six tumors and six

matched normal) (Kannan et al., 2011). Using these samples, three data sets were generated, one from the

original reads, one by applying DUST on the reads, and the third one by applying Zseq on the reads for all

samples. In the next step, all reads corresponding to each data set have been aligned to human genome hg19

using Tophat2 (Kim et al., 2013) and Cufflinks assembler (Trapnell et al., 2012) with default parameters to

assemble the transcripts to the human genome and estimate their abundance, which is measured by FPKM

value (fragments per kilo bases of exons for per million mapped reads). Table 2 shows the average mapping

rate of reads filtered by each method.

Each generated data set using filtered reads has 43,497 features (transcripts) with FPKM values. Also,

each of the 12 samples was labeled as cancer or matched benign. The FPKM value equals 0 if the transcript

has not been presented in that sample. We measured the number of transcripts that can individually separate

all cancer samples from normal samples perfectly, with 100% accuracy. In other words, we want to com-

pute the number of transcripts generated using filtered reads by each method, in such a way that the FPKM

values corresponding to cancer samples can be separated from those of FPKM of normal samples. Figure 9

depicts two transcripts; transcript a has clearly separable FPKM values, while in transcript b, the FPKM

values cannot be separated accurately.

Table 3 shows the number of transcripts that contain separable FPKM values. These results indicate that

applying Zseq influences the alignment tool and assembler to quantify more meaningful transcripts that can

discriminate cancer and normal samples in comparison with the DUST method and original reads.

Table 2. Average Mapping Rate of Transcripts Using

the Data Set Generated by the Original Reads,

Reads Filtered by DUST, and Reads Filtered by Zseq

Original DUST Zseq

88.90% 90.10% 90.40%

FIG. 9. An example of two transcripts, one with separable

FPKM values (a), and other transcript with inseparable FPKM

values (b).
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Moreover, using chi2 (Liu and Setiono, 1995) statistical test on the 231 discriminative transcripts from

Zseq data set, the NM_001145410 transcript corresponding to NONO gene was the most significant

transcript among all other transcripts in all three data sets. NONO is known to regulate in different types of

cancers such as breast and prostate cancer (Traish et al., 1997; Ishiguro et al., 2003). Next, a support vector

machine (SVM) with linear kernel was applied on the three data sets using this transcript as feature. SVM is

a supervised learning machine that tries to find an optimal separating hyperplane between classes (Cortes

and Vapnik, 1995). Using a leave-two-out cross-validation scheme, the classification returns 100% accu-

racy for the Zseq data set, 91.66% for the DUST data set, while it was down to 83.33% in the original read

data set.

3.3. Result of estimated cutoff point Zseq

Result of estimated cutoff point Zseq as shown in Tables 4 and 5 suggested that the method does not find

the optimal point. The result of Zseq on the prostate cancer data set using the threshold h = -1.5 in the

previous section outperformed the result of the EC-Zseq. Despite having a better mapping rate, EC-Zseq

falls short in mean GC content to Zseq with h, in a number of ambiguous nucleotide measurements

comparing to DUST and Zseq with h, and in a number of decisive transcripts comparing to Zseq with h.

However, EC-Zseq still shows a better result than the original data set or preprocessing the data set using

the DUST method.

4. CONCLUSION

We have presented a novel method for filtering the reads that reduce the number of biased, duplicate, or

ambiguous sequences. Our method finds the complexity of the sequences by assigning a unique score to

each read. Using a user-defined threshold, the user can filter the reads with a score less than the threshold.

Applying the proposed method on real samples shows that the Zseq algorithm is statistically sound and

provides a better mapping rate, while it significantly reduces the number of ambiguous bases in comparison

Table 3. The Number of Discriminative Transcripts

For Each of the Three Data Sets

Data set

No. of discriminative

transcripts

Original 167

Filtered by DUST 159

Filtered by Zseq 231

Table 4. Some Artifact Measurements of Prostate Cancer

Samples That Were Preprocessed By Ec-Zseq

Sample number

EC-Zseq

Occurrences of N Mean GC content (%) Mapping rate (%)

SRR202054 33,124 52.71 – 13.40 93.40

SRR202055 27,890 52.91 – 12.76 93.30

SRR202056 34,453 52.82 – 13.07 93.50

SRR202057 30,321 52.68 – 12.52 93.40

SRR202058 14,760 52.87 – 13.43 92.90

SRR202059 15,203 52.18 – 12.62 92.80

SRR202060 16,704 53.31 – 12.09 92.70

SRR202061 1926 49.11 – 10.62 79.70

SRR202062 5484 532.70 – 12.47 72.10
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with other state-of-the-art methods. Estimating the cutoff point using Labeling rules shows a good result.

However, it is not the optimal. The Zseq method is publicly available and can be accessed using the

following link: http://sourceforge.net/projects/zseq.
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